Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Hong SL, Lee GS, Syed Abdul Rahman SN, Ahmed Hamdi OA, Awang K, Aznam Nugroho N, et al.
    ScientificWorldJournal, 2014;2014:397430.
    PMID: 25177723 DOI: 10.1155/2014/397430
    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
    Matched MeSH terms: Oils, Volatile/chemistry
  2. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN
    Int J Biol Macromol, 2020 Aug 15;157:743-751.
    PMID: 31805325 DOI: 10.1016/j.ijbiomac.2019.11.244
    This study describes a sago starch-based film by incorporation of cinnamon essential oil (CEO) and nano titanium dioxide (TiO2-N). Different concentrations (i.e., 0%, 1%, 3%, and 5%, w/w) of TiO2-N and CEO (i.e., 0%, 1%, 2%, and 3%, v/w) were incorporated into sago starch film, and the physicochemical, barrier, mechanical, and antimicrobial properties of the bionanocomposite films were estimated. Incorporation of CEO into the sago starch matrix increased oxygen and water vapor permeability of starch films while increasing TiO2-N concentration decreased barrier properties. Moisture content also decreased from 12.96% to 8.04%, solubility in water decreased from 25% to 13.7%, and the mechanical properties of sago starch films improved. Sago starch bionanocomposite films showed excellent antimicrobial activity against Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus. Results also showed that incorporation of TiO2-N and CEO had synergistic effects on functional properties of sago starch films. In summary, sago starch films incorporated with both TiO2-N and CEO shows potential application for active packaging in food industries such as fresh pistachio packaging.
    Matched MeSH terms: Oils, Volatile/chemistry*
  3. Salleh WMNHW, Khamis S, Nafiah MA, Abed SA
    Nat Prod Res, 2021 Jun;35(11):1887-1892.
    PMID: 31293176 DOI: 10.1080/14786419.2019.1639183
    This study was designed to examine the chemical composition and anticholinesterase inhibitory activity of the essential oil of Pseuduvaria macrophylla (Oliv.) Merr. (Annonaceae) from Malaysia. The essential oil was obtained by hydrodistillation and fully analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The analysis led to the identification of thirty-four chemical components that represented 87.7 ± 0.5% of the total oil. The essential oil was found to be rich in germacrene D (21.1 ± 0.4%), bicyclogermacrene (10.5 ± 0.5%), δ-cadinene (5.6 ± 0.2%), α-copaene (5.1 ± 0.3%), and α-cadinol (5.0 ± 0.3%). Anticholinesterase activity was evaluated using Ellman method. The essential oil showed weak inhibitory activity against acetylcholinesterase (I%: 32.5%) and butyrylcholinesterase (I%: 35.4%) assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Pseuduvaria macrophylla.
    Matched MeSH terms: Oils, Volatile/chemistry
  4. Romero Rocamora C, Ramasamy K, Meng Lim S, Majeed ABA, Agatonovic-Kustrin S
    J Pharm Biomed Anal, 2020 Jan 30;178:112909.
    PMID: 31618702 DOI: 10.1016/j.jpba.2019.112909
    A high-performance thin-layer chromatography (HPTLC) method combined with effect-directed-analysis (EDA) was developed to screen the antioxidant, neuroprotective and antidiabetic effects in essential oils derived from lavender flower, lemon myrtle, oregano, peppermint, sage, and rosemary leaves (Lamiaceae family). HPTLC hyphenated with microchemical (DPPH•, p-anisaldehyde, and ferric chloride) derivatizations, was used to evaluate antioxidant activity, presence of phytosterols and terpenoids, and polyphenolic content, while the combination with biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to asses α-amylase and AChE inhibitory activities. The superior antioxidant activity of oregano leaf extract is attributed to the presence of high levels of aromatic compounds, like polyphenolic acids. The strongest α-amylase inhibition was observed in lemon myrtle and rosemary plus extracts due to the presence of monoterpenes. Rosemary and sage extracts exhibit the highest AChE inhibition activity, with 1 μL essential oils being more potent than the recommended daily dose of donepezil. This superior neuroprotection was attributed to the presences of di- and triterpenes that displayed strong AChE inhibition and antioxidant potential in DPPH• free radical assay. Antioxidant activity was related to phenolic content (R = 0.49), while α-amylase inhibitory activity was positively related to antioxidant activity (R = 0.20) and terpenoid/sterol content (R = 0.31). AChE inhibitory activity was correlated (R = 0.80) to the combined effect of phenolics and terpenoids. Thus, the superior AChE inhibitory and neuroprotection potential of rosemary and sage essential oils could be attributed to joint effects of main phenolic and terpene constituents. The hyphenated HPTLC method provided rapid bioanalytical profiling of highly complex essential oil samples.
    Matched MeSH terms: Oils, Volatile/chemistry*
  5. Jusoh S, Sirat HM, Ahmad F
    Nat Prod Commun, 2013 Sep;8(9):1317-20.
    PMID: 24273875
    The essential oils from the leaves, pseudostems, rhizomes and fruits of Alpinia rafflesiana were isolated by hydrodistillation. The oils were analysed by capillary GC and GC-MS. The most abundant components in the leaf oil were trans-caryophyllene (32.61%), caryophyllene oxide (8.67%), (2E,6Z)-farnesol (4.91%) and alpha-terpineol (4.25%), while 1,8-cineole (32.25%), myrcene (13.63%), alpha-terpineol (9.90%) and trans-caryophyllene (9.80%) were the main constituents in the pseudostem oil. The rhizome constituted of tetracosane (42.61%), tau-cadinol (7.46%), alpha-terpineol (6.71%) were the major components, whereas tetracosane (13.39%), (2E,6E)-farnesol (7.31%), alpha-terpineol (8.51%) and caryophyllene oxide (8.05%) were the main components in the fruit oil. Antimicrobial assay revealed that all the essential oils showed moderate to weak inhibition against the tested microorganisms. The leaf oil was the most active and inhibited both S. aureus and E. coli with MIC values of 7.81 microg/mL and 15.6 microg/mL, respectively.
    Matched MeSH terms: Oils, Volatile/chemistry*
  6. Abdul Hammid S, Ahmad F
    Nat Prod Commun, 2015 Jul;10(7):1301-4.
    PMID: 26411035
    The essential oils from different parts of Litsea cubeba, collected from the highlands of Sarawak, were isolated and their chemical compositions analyzed. This study demonstrated significant variations in the chemical compositions and the chemical profiles of the volatiles and could provide valuable supplementary information on the geographical variations of the species. The fruit essential oil was dominated by citronellal, d-limonene and citronellol, while the leaf oil was high in eucalyptol and a-terpineol. High concentrations of citronellal and citronellol in both the root and bark oils were identified. In the stem, the oil was dominated by eucalyptol, d-limonene and α-terpineol. The activity of the oils against brine shrimp larvae, bacteria, yeast and fungi was determined. The oils were toxic against brine shrimp larvae with LC50 values ranging from 25.1 - 30.9 μL/mL. The oils also demonstrated a wide spectrum of inhibition against microorganisms with inhibition zones between 19.5 - 46.7 mm against Gram-positive bacteria and 10.5 - 90.0 mm against yeast and fungi. However, the oils were not active against Gram-negative bacteria.
    Matched MeSH terms: Oils, Volatile/chemistry*
  7. Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM
    Phytother Res, 2013 Oct;27(10):1439-56.
    PMID: 23281145 DOI: 10.1002/ptr.4897
    Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti-microbial, anti-oxidant, anti-diabetic, anxiolytic, anti-epileptic, anti-depressant, anti-mutagenic, anti-inflammatory, anti-dyslipidemic, anti-hypertensive, neuro-protective and diuretic. Interestingly, coriander also possessed lead-detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry.
    Matched MeSH terms: Oils, Volatile/chemistry
  8. Qaralleh HN, Abboud MM, Khleifat KM, Tarawneh KA, Althunibat OY
    Pak J Pharm Sci, 2009 Jul;22(3):247-51.
    PMID: 19553168
    This study was carried out to evaluate the antibacterial activity of aqueous and organic extracts of Thymus capitatus L. (Lamiaceae) leaves and stems. Dried ground powder leaves and stems were extracted with water (aqueous extracts), ethanol, dichloromethane and hexane (Soxhlet extracts). The antibacterial activity of these extracts was evaluated against bacteria using disc diffusion method. The result obtained showed that the leaves had stronger antibacterial activity than the stems extracts. The ethanolic extract had the highest yield products and the high antibacterial activity than all other solvents. The results suggest that essential oil as non-polar organic compounds could be the main active compounds in this plant. Therefore the antibacterial activity of leaves ethanol extracts (LEE) was compared with essential oils leaves extracts (LEO) of T. capitatus. The LEO showed greater antibacterial activity than LEE. The LEO showed a broad spectrum of antibacterial activity and the Pseudomonas aeruginosa was the most sensitive bacteria.
    Matched MeSH terms: Oils, Volatile/chemistry
  9. Ibrahim H, Sivasothy Y, Syamsir DR, Nagoor NH, Jamil N, Awang K
    ScientificWorldJournal, 2014;2014:430831.
    PMID: 24987733 DOI: 10.1155/2014/430831
    The essential oils obtained by hydrodistillation of the unripe and ripe fruits of Alpinia mutica Roxb. and Alpinia latilabris Ridl. were analysed by capillary GC and GC-MS. The oils were principally monoterpenic in nature. The unripe and ripe fruit oils of A. mutica were characterized by camphor (21.0% and 15.8%), camphene (16.6% and 10.2%), β-pinene (8.6% and 13.5%), and trans,trans-farnesol (8.0% and 11.2%), respectively. The oils of the unripe and ripe fruits were moderately active against Staphylococcus aureus, Bacillus subtilis, Trichophyton mentagrophytes, and Trichophyton rubrum. 1,8-Cineole (34.2% and 35.9%) and β-pinene (20.2% and 19.0%) were the two most abundant components in the unripe and ripe fruit oils of A. latilabris. The oil of the unripe fruits elicits moderate activity against Staphylococcus aureus and Trichophyton mentagrophytes while Candida glabrata was moderately sensitive to the oil of the ripe fruits.
    Matched MeSH terms: Oils, Volatile/chemistry*
  10. Awang K, Ibrahim H, Rosmy Syamsir D, Mohtar M, Mat Ali R, Azah Mohamad Ali N
    Chem Biodivers, 2011 Apr;8(4):668-73.
    PMID: 21480512 DOI: 10.1002/cbdv.201000225
    The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ-selinene (11.60%), β-pinene (10.87%), (E,E)-farnesyl acetate (8.65%), and α-terpineol (6.38%), while those of the leaf oil were β-pinene (39.61%), α-pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.
    Matched MeSH terms: Oils, Volatile/chemistry*
  11. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M
    SAR QSAR Environ Res, 2017 Aug;28(8):691-703.
    PMID: 28976224 DOI: 10.1080/1062936X.2017.1375010
    A robust screening approach and a sparse quantitative structure-retention relationship (QSRR) model for predicting retention indices (RIs) of 169 constituents of essential oils is proposed. The proposed approach is represented in two steps. First, dimension reduction was performed using the proposed modified robust sure independence screening (MR-SIS) method. Second, prediction of RIs was made using the proposed robust sparse QSRR with smoothly clipped absolute deviation (SCAD) penalty (RSQSRR). The RSQSRR model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], Y-randomization test, [Formula: see text], [Formula: see text], and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of the RSQSRR for training dataset outperform the other two used modelling methods. The RSQSRR shows the highest [Formula: see text], [Formula: see text], and [Formula: see text], and the lowest [Formula: see text]. For the test dataset, the RSQSRR shows a high external validation value ([Formula: see text]), and a low value of [Formula: see text] compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed RSQSRR is an efficient approach for modelling high dimensional QSRRs and the method is useful for the estimation of RIs of essential oils that have not been experimentally tested.
    Matched MeSH terms: Oils, Volatile/chemistry*
  12. Chan WK, Tan LT, Chan KG, Lee LH, Goh BH
    Molecules, 2016 Apr 28;21(5).
    PMID: 27136520 DOI: 10.3390/molecules21050529
    Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is a naturally occurring sesquiterpene alcohol that is present in various plants with a floral odor. It is synthesized as an intermediate in the production of (3E)-4,8-dimethy-1,3,7-nonatriene (DMNT), a herbivore-induced volatile that protects plants from herbivore damage. Chemically, nerolidol exists in two geometric isomers, a trans and a cis form. The usage of nerolidol is widespread across different industries. It has been widely used in cosmetics (e.g., shampoos and perfumes) and in non-cosmetic products (e.g., detergents and cleansers). In fact, U.S. Food and Drug Administration (FDA) has also permitted the use of nerolidol as a food flavoring agent. The fact that nerolidol is a common ingredient in many products has attracted researchers to explore more medicinal properties of nerolidol that may exert beneficial effect on human health. Therefore, the aim of this review is to compile and consolidate the data on the various pharmacological and biological activities displayed by nerolidol. Furthermore, this review also includes pharmacokinetic and toxicological studies of nerolidol. In summary, the various pharmacological and biological activities demonstrated in this review highlight the prospects of nerolidol as a promising chemical or drug candidate in the field of agriculture and medicine.
    Matched MeSH terms: Oils, Volatile/chemistry
  13. Yusoff MM, Ibrahim H, Hamid NA
    Chem Biodivers, 2011 May;8(5):916-23.
    PMID: 21560240 DOI: 10.1002/cbdv.201000270
    Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC-FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8-cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)-methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ∼ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ∼ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.
    Matched MeSH terms: Oils, Volatile/chemistry*
  14. Omar MN, Nor NN, Idris NA
    Pak J Biol Sci, 2007 Apr 01;10(7):1044-9.
    PMID: 19070048
    Changes of aroma constituents of palm olein and selected oils after frying French fries have been studied. The aroma constituents of used oils were collected using a solid-phase microextraction (SPME) headspace technique with an absorbent of a divinylbenzene/carboxen (DVB/CAR) (50/30 microm) on polydimethylsiloxane (PDMS) fibre. The extracted volatiles were desorbed from the fibre in the injection port of the gas chromatograph at 250 degrees C and the aroma constituents were identified by GC-MS. Analytical data showed that volatile constituents of palm olein, soybean oil, corn oil and sunflower oil changed while frying continued from 2 to 40 h, respectively. In palm olein, the 2t,4t-decadienal content decreased from 14.7 to 5.5 microg g(-1) (40 h) whilst hexanal increased from 7.9 microg g(-1) (2 h) to 29.2 microg g(-1) (40 h), respectively. Similar result was also obtained from soybean oil after frying French fries. The 2t,4t-decadienal content decreased from 15.9 microg g(-1) (2 h) to 3.2 microg g(-1) after 40 h frying whilst hexanal increased from 10.2 microg g(-1) (2 h) to 34.2 microg g(-1) (40 h). Meanwhile, in corn oil, it was found that 2t,4t-decadienal decreased from 15.6 microg g(-1) (2 h) to 3.2 microg g(-1) (40 h) whilst hexanal increased from 11.3 microg g(-1) (2 h) to 33.8 microg g(-1) when frying time reached 40 h. In sunflower oil, it was found that 2t,4t-decadienal, decreased from 16.8 microg g(-1) (2 h) to 1.2 microg g(-1) (40 h) while hexanal increased from 9.5 microg g(-1) (2 h) to 32.4 microg g(-1) when frying time reached 40 h. It also showed that used oils exhibited off-odour characteristics due to the increasing amount ofhexanal while their freshness characteristics diminished due to the decreasing amount of 2t, 4t-decadienal.
    Matched MeSH terms: Oils, Volatile/chemistry*
  15. Jani NA, Sirat HM, Ahmad F, Mohamad Ali NA, Jamil M
    Nat Prod Res, 2017 Dec;31(23):2793-2796.
    PMID: 28278643 DOI: 10.1080/14786419.2017.1294172
    Hydrodistillation of the fresh stem and leaf of Neolitsea kedahense Gamble, collected from Gunung Jerai, Malaysia followed by the GC-FID and GC-MS analysis revealed the detection of a total of 47 constituents of which 28 (86.4%) from the stem and 31 (96.4%) constituents from the leaf. δ-Cadinene (17.4%), 1-epi-cubenol (11.8%), cyperotundone (9.0%), cis-cadin-4-en-7-ol (7.7%), τ-cadinol (7.1%) and α-cadinol (7.1%) were the principle constituents in the stem oil, whereas β-caryophyllene (18.9%), bicyclogermacrene (18.6%) and trans-muurola-4(14),5-diene (9.8%) were the major constituents in the leaf oil. Among the identified constituents, three constituents namely 7-epi-α-selinene, junenol and cis-cadin-4-en-7-ol have not been found previously from Neolitsea oils. The stem and leaf oils were screened for their α-glucosidase inhibitory and antibacterial activities. Both oils displayed potential α-glucosidase inhibitory activity, while the stem oil possessed weak antibacterial activity against Bacillus subtilis.
    Matched MeSH terms: Oils, Volatile/chemistry*
  16. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Oils, Volatile/chemistry
  17. Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA
    Int J Mol Sci, 2015;16(7):15625-58.
    PMID: 26184167 DOI: 10.3390/ijms160715625
    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.
    Matched MeSH terms: Oils, Volatile/chemistry
  18. Abdelwahab SI, Zaman FQ, Mariod AA, Yaacob M, Abdelmageed AH, Khamis S
    J Sci Food Agric, 2010 Dec;90(15):2682-8.
    PMID: 20945508 DOI: 10.1002/jsfa.4140
    Plant essential oils are widely used as fragrances and flavours. Therefore, the essential oils from the leaves of Cinnamomum pubescens Kochummen (CP) and the whole plant of Etlingera elatior (EE) were investigated for their antioxidant, antibacterial and phytochemical properties.
    Matched MeSH terms: Oils, Volatile/chemistry
  19. Salleh WMNHW, Khamis S
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):467-471.
    PMID: 32469335 DOI: 10.1515/znc-2020-0075
    Chemical composition and anticholinesterase activity of the essential oil of Pavetta graciliflora Wall. ex Ridl. (Rubiaceae) was examined for the first time. The essential oil was obtained by hydrodistillation and was fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). A total of 20 components were identified in the essential oil, which made up 92.85% of the total oil. The essential oil is composed mainly of β-caryophyllene (42.52%), caryophyllene oxide (25.33%), β-pinene (8.67%), and α-pinene (6.52%). The essential oil showed weak inhibitory activity against acetylcholinesterase (AChE) (I%: 62.5%) and butyrylcholinesterase (BChE) (I%: 65.4%) assays. Our findings were shown to be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from P. graciliflora.
    Matched MeSH terms: Oils, Volatile/chemistry*
  20. Yan D, Wong YF, Shellie RA, Marriott PJ, Whittock SP, Koutoulis A
    Food Chem, 2019 Mar 01;275:15-23.
    PMID: 30724181 DOI: 10.1016/j.foodchem.2018.09.082
    This study investigated the volatile phytochemical diversity of 30 samples obtained from experimental hybrid and commercial H. lupulus L. plants. Essential oils distilled from these samples were analysed by high resolution gas chromatography coupled with accurate mass time-of-flight mass spectrometry (GC-accTOFMS). A total of 58 secondary metabolites, mainly comprising 18 esters, 6 monoterpene hydrocarbons, 2 oxygenated monoterpenes, 20 sesquiterpene hydrocarbons, 7 oxygenated sesquiterpenes, and 4 ketones, were positively or tentatively identified. A total of 24 metabolites were detected in all samples, but commercial cultivars (selected for brewing performance) had fewer compounds identified compared to experimental genotypes. Chemometrics analyses enabled distinct differentiation of experimental hybrids from commercial cultivars, discussed in terms of the different classes of compounds present in different genotypes. Differences among the mono- and sesquiterpenoids, appear to be related to either: i) the genetic origin of the plants; or ii) the processes of bioaccumulation of the identified secondary metabolites.
    Matched MeSH terms: Oils, Volatile/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links