Displaying publications 21 - 40 of 98 in total

Abstract:
Sort:
  1. Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM
    Drug Des Devel Ther, 2016;10:1817-27.
    PMID: 27330275 DOI: 10.2147/DDDT.S101212
    BACKGROUND: Zingiber spectabile, commonly known as Beehive Ginger, is used as an ethnobotanical plant in many countries as an appetizer or to treat stomachache, toothache, muscle sprain, and as a cure for swelling, sores and cuts. This is the first report of isolation of Streptomyces strain from the root of this plant. Strain Universiti Kebangsaan 25 (SUK 25) has a very high activity to produce secondary metabolites against methicillin-resistant Staphylococcus aureus (MRSA), which is associated with high morbidity and mortality rates due to acquired multidrug resistance genes and causes medication failure in some clinical cases worldwide. Phylogenetic analysis based on the 16S ribosomal RNA gene sequence exhibited that the most closely related strain was Streptomyces omiyaensis NBRC 13449T (99.0% similarity).

    AIM: This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476.

    MATERIALS AND METHODS: The production of secondary metabolites by this strain was optimized through Thronton's media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance.

    RESULTS: During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol.

    CONCLUSION: On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.

    Matched MeSH terms: Anti-Infective Agents/chemistry
  2. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  3. Jalal TK, Ahmed IA, Mikail M, Momand L, Draman S, Isa ML, et al.
    Appl Biochem Biotechnol, 2015 Apr;175(7):3231-43.
    PMID: 25649443 DOI: 10.1007/s12010-015-1499-0
    Artocarpus altilis (breadfruit) pulp, peel and whole fruit were extracted with various solvents such as hexane, dichloromethane (DCM) and methanol. The antioxidant activity of these extracts were examined using the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test. IC50 was 55 ± 5.89 μg/ml for the pulp part of methanol extract. In the β-carotene bleaching assay, the antioxidant activity was 90.02 ± 1.51 % for the positive control (Trolox) and 88.34 ± 1.31 % for the pulp part of the fruit methanol extract. The total phenolic content of the crude extracts was determined using the Folin-Ciocalteu procedure; methanol pulp part demonstrated the highest phenol content value of 781 ± 52.97 mg GAE/g of dry sample. While the total flavonoid content was determined using the aluminium chloride colorimetric assay, the highest value of 6213.33 ± 142.22 mg QE/g was indicated by pulp part of the fruit methanol extract. The antimicrobial activity of the crude extracts was tested using disc diffusion method against pathogenic microorganisms: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia and Candida albicans. Methanol extract of pulp part was recorded to have the highest zone of inhibition against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) and MBC/minimal fungicidal concentration (MFC) for the extracts were also determined using the microdilution method ranging from 4000 to 63 μg/ml against pathogenic microbes. The MBC/MFC values varied from 250 to 4000 μg/ml. A correlation between antioxidant activity assays, antimicrobial activity and phenolic content was established. The results shows that the various parts of A. altilis fruit extracts promising antioxidant activities have potential bioactivities due to high content of phenolic compounds.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  4. Rennukka M, Sipaut CS, Amirul AA
    Biotechnol Prog, 2014 Nov-Dec;30(6):1469-79.
    PMID: 25181613 DOI: 10.1002/btpr.1986
    This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  5. Tang SW, Sukari MA, Neoh BK, Yeap YS, Abdul AB, Kifli N, et al.
    Biomed Res Int, 2014;2014:417674.
    PMID: 25057485 DOI: 10.1155/2014/417674
    Phytochemical investigation on rhizomes of Kaempferia angustifolia has afforded a new abietene diterpene, kaempfolienol (1) along with crotepoxide (2), boesenboxide (3), 2'-hydroxy-4,4',6'-trimethoxychalcone (4), zeylenol (5), 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), sucrose, β-sitosterol, and its glycoside (8). The structures of the compounds were elucidated on the basis of spectroscopic methods (IR, MS, and NMR). Isolation of 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), and β-sitosterol-3-O-β-D-glucopyranoside (8) from this plant species has never been reported previously. The spectroscopic data of (7) is firstly described in this paper. Cytotoxic screening indicated that most of the pure compounds tested showed significant activity with (4) showing the most potent activity against HL-60 (human promyelocytic leukemia) and MCF-7 (human breast cancer) cell lines. However, all extracts and most of the pure compounds tested were found to be inactive against HT-29 (human colon cancer) and HeLa (human cervical cancer) cell lines. Similarly, none of the extracts or compounds showed activity in the antimicrobial testing.
    Matched MeSH terms: Anti-Infective Agents/chemistry*
  6. Arockiaraj J, Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, et al.
    Peptides, 2014 Mar;53:79-88.
    PMID: 24269604 DOI: 10.1016/j.peptides.2013.11.008
    In this study, we reported a complete molecular characterization including bioinformatics features, gene expression, peptide synthesis and its antimicrobial activities of an anti-lipopolysaccharide (LPS) factor (ALF) cDNA identified from the established cDNA library of freshwater prawn Macrobrachium rosenbergii (named as MrALF). The mature protein has an estimated molecular weight of 11.240 kDa with an isoelectric point of 9.46. The bioinformatics analysis showed that the MrALF contains an antimicrobial peptide (AMP) region between T54 and P77 with two conserved cysteine residues (Cys55 and Cys76) which have an anti-parallel β-sheet confirmation. The β-sheet is predicted as cationic with hydrophobic nature containing a net charge of +5. The depicted AMP region is determined to be amphipathic with a predicted hydrophobic face 'FPVFI'. A highest MrALF gene expression was observed in hemocytes and is up-regulated with virus [white spot syndrome baculovirus (WSBV)], bacteria (Aeromonas hydrophila) and Escherichia coli LPS at various time points. The LPS binding region of MrALF peptide was synthesized to study the antimicrobial property, bactericidal efficiency and hemolytic capacity. The peptide showed antimicrobial activity against both the Gram-negative and Gram-positive bacteria. The bactericidal assay showed that the peptide recognized the LPS of bacterial cell walls and binding on its substrate and thereby efficiently distinguishing the pathogens. The hemolytic activity of MrALF peptide is functioning in a concentration dependant manner. In summary, the comprehensive analysis of MrALF showed it to be an effective antimicrobial peptide and thus it plays a crucial role in the defense mechanism of M. rosenbergii.
    Matched MeSH terms: Anti-Infective Agents/chemistry*
  7. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H
    Asian Pac J Trop Med, 2012 Mar;5(3):202-9.
    PMID: 22305785 DOI: 10.1016/S1995-7645(12)60025-X
    OBJECTIVE: To analyze the chemical composition of the essential oils of Curcuma aeruginosa (C. aeruginosa), Curcuma mangga (C. mangga), and Zingiber cassumunar (Z. cassumunar), and study their antimicrobial activity.

    METHODS: Essential oils obtained by steam distillation were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of the essential oils was evaluated against four bacteria: Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa); and two fungi: Candida albicans (C. albicans) and Cyptococcus neoformans (C. neoformans), using disc-diffusion and broth microdilution methods.

    RESULTS: Cycloisolongifolene, 8,9-dehydro formyl (35.29%) and dihydrocostunolide (22.51%) were the major compounds in C. aeruginosa oil; whereas caryophyllene oxide (18.71%) and caryophyllene (12.69%) were the major compounds in C. mangga oil; and 2,6,9,9-tetramethyl-2,6,10-cycloundecatrien-1-one (60.77%) and α-caryophyllene (23.92%) were abundant in Z. cassumunar oil. The essential oils displayed varying degrees of antimicrobial activity against all tested microorganisms. C. mangga oil had the highest and most broad-spectrum activity by inhibiting all microorganisms tested, with C. neoformans being the most sensitive microorganism by having the lowest minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 0.1 μL/mL. C. aeruginosa oil showed mild antimicrobial activity, whereas Z. cassumunar had very low or weak activity against the tested microorganisms.

    CONCLUSIONS: The preliminary results suggest promising antimicrobial properties of C. mangga and C. aeruginosa, which may be useful for food preservation, pharmaceutical treatment and natural therapies.

    Matched MeSH terms: Anti-Infective Agents/chemistry
  8. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Amin MA, et al.
    Molecules, 2012;17(5):6071-82.
    PMID: 22614861 DOI: 10.3390/molecules17056071
    One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 µg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  9. Arumugam G, Swamy MK, Sinniah UR
    Molecules, 2016 Mar 30;21(4):369.
    PMID: 27043511 DOI: 10.3390/molecules21040369
    Plectranthus amboinicus (Lour.) Spreng. is a perennial herb belonging to the family Lamiaceae which occurs naturally throughout the tropics and warm regions of Africa, Asia and Australia. This herb has therapeutic and nutritional properties attributed to its natural phytochemical compounds which are highly valued in the pharmaceutical industry. Besides, it has horticultural properties due to its aromatic nature and essential oil producing capability. It is widely used in folk medicine to treat conditions like cold, asthma, constipation, headache, cough, fever and skin diseases. The leaves of the plant are often eaten raw or used as flavoring agents, or incorporated as ingredients in the preparation of traditional food. The literature survey revealed the occurrence 76 volatiles and 30 non-volatile compounds belonging to different classes of phytochemicals such as monoterpenoids, diterpenoids, triterpenoids, sesquiterpenoids, phenolics, flavonoids, esters, alcohols and aldehydes. Studies have cited numerous pharmacological properties including antimicrobial, antiinflammatory, antitumor, wound healing, anti-epileptic, larvicidal, antioxidant and analgesic activities. Also, it has been found to be effective against respiratory, cardiovascular, oral, skin, digestive and urinary diseases. Yet, scientific validation of many other traditional uses would be appreciated, mainly to discover and authenticate novel bioactive compounds from this herb. This review article provides comprehensive information on the botany, phytochemistry, pharmacology and nutritional importance of P. amboinicus essential oil and its various solvent extracts. This article allows researchers to further explore the further potential of this multi-utility herb for various biomedical applications.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  10. Peh K, Khan T, Ch'ng H
    J Pharm Pharm Sci, 2000 Sep-Dec;3(3):303-11.
    PMID: 11177648
    To investigate the suitability of chitosan films prepared using two different solvents, acetic acid (Chitosan-AA) and lactic acid (Chitosan-LA), for wound dressing, in comparison with a commercial preparation, Omiderm.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  11. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  12. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN
    Int J Biol Macromol, 2020 Aug 15;157:743-751.
    PMID: 31805325 DOI: 10.1016/j.ijbiomac.2019.11.244
    This study describes a sago starch-based film by incorporation of cinnamon essential oil (CEO) and nano titanium dioxide (TiO2-N). Different concentrations (i.e., 0%, 1%, 3%, and 5%, w/w) of TiO2-N and CEO (i.e., 0%, 1%, 2%, and 3%, v/w) were incorporated into sago starch film, and the physicochemical, barrier, mechanical, and antimicrobial properties of the bionanocomposite films were estimated. Incorporation of CEO into the sago starch matrix increased oxygen and water vapor permeability of starch films while increasing TiO2-N concentration decreased barrier properties. Moisture content also decreased from 12.96% to 8.04%, solubility in water decreased from 25% to 13.7%, and the mechanical properties of sago starch films improved. Sago starch bionanocomposite films showed excellent antimicrobial activity against Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus. Results also showed that incorporation of TiO2-N and CEO had synergistic effects on functional properties of sago starch films. In summary, sago starch films incorporated with both TiO2-N and CEO shows potential application for active packaging in food industries such as fresh pistachio packaging.
    Matched MeSH terms: Anti-Infective Agents/chemistry*
  13. Anwar A, Siddiqui R, Raza Shah M, Khan NA
    J Microbiol Biotechnol, 2019 May 28;29(5):713-720.
    PMID: 31030451 DOI: 10.4014/jmb/1903.03009
    Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  14. Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, et al.
    Molecules, 2019 Apr 07;24(7).
    PMID: 30959974 DOI: 10.3390/molecules24071364
    Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  15. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  16. Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, et al.
    Molecules, 2021 Jun 03;26(11).
    PMID: 34205014 DOI: 10.3390/molecules26113379
    With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  17. Senthil-Rajan D, Rajkumar M, Srinivasan R, Kumarappan C, Arunkumar K, Senthilkumar KL, et al.
    Trop Biomed, 2013 Dec;30(4):570-8.
    PMID: 24522124 MyJurnal
    Many medicinal plants have been used for centuries in daily life to treat microbial diseases all over the world. In this study, the in vitro antibacterial activity of aqueous and ethanol root extracts of Thespesia populnea Linn were investigated. Antimicrobial properties of T. populnea Linn was evaluated against five pathogenic bacteria and two fungi. Disc diffusion method and minimum inhibitory concentration (MIC) were determined by broth serial dilution method. The ciprofloxacin (5 μg/ml) and flucanozole (100 units/disc) were used as positive controls for bacteria and fungi respectively. Different concentrations (50, 100, 150 μg/ml) of ethanolic and aqueous root extracts of T. populnea were checked for the dose dependent antibacterial activity. Thespesia populnea showed broad spectrum antimicrobial activity against gram positive and gram negative bacteria and maximum inhibition by ethanolic extract was observed at higher dose (250 μg/ml) as 27±0.2mm. The MIC of the ethanol extract was 10 μg/ml for Staphylococcus aureus and 750 μg/ml for Candida albicans. The antifungal activity offered against S. aureus by the ethanolic extract is more than the aqueous extract. The results concluded that the anti-microbial activity of T. populnea was dose dependent. As the concentration increased the inhibition zone also increased. Flavonoids and tannins present in the extracts may be responsible for the antimicrobial activity.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  18. Jakinala P, Lingampally N, Hameeda B, Sayyed RZ, Khan M Y, Elsayed EA, et al.
    PLoS One, 2021;16(3):e0241729.
    PMID: 33735177 DOI: 10.1371/journal.pone.0241729
    Silver nanoparticles (AgNPs) are among the most widely synthesized and used nanoparticles (NPs). AgNPs have been traditionally synthesized from plant extracts, cobwebs, microorganisms, etc. However, their synthesis from wing extracts of common insect; Mang mao which is abundantly available in most of the Asian countries has not been explored yet. We report the synthesis of AgNPs from M. mao wings extract and its antioxidant and antimicrobial activity. The synthesized AgNPs were spherical, 40-60 nm in size and revealed strong absorption plasmon band around at 430 nm. Highly crystalline nature of these particles as determined by Energy-dispersive X-ray analysis and X-ray diffraction further confirmed the presence of AgNPs. Hydrodynamic size and zeta potential of AgNPs were observed to be 43.9 nm and -7.12 mV, respectively. Fourier-transform infrared spectroscopy analysis revealed the presence of characteristic amide proteins and aromatic functional groups. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis revealed the presence of fatty acids in the wings extract that may be responsible for biosynthesis and stabilization of AgNPs. Further, SDS-PAGE of the insect wing extract protein showed the molecular weight of 49 kDa. M. mao silver nanoparticles (MMAgNPs) exhibit strong antioxidant, broad-range antibacterial and antifungal activities, (66.8 to 87.0%), broad-range antibacterial and antifungal activities was found with maximum zone of inhibition against Staphylococcus aureus MTCC 96 (35±0.4 mm) and Fusarium oxysporum f. sp. ricini (86.6±0.4) which signifies their biomedical and agricultural potential.
    Matched MeSH terms: Anti-Infective Agents/chemistry*
  19. Prasher P, Sharma M, Aljabali AAA, Gupta G, Negi P, Kapoor DN, et al.
    Drug Dev Res, 2020 11;81(7):837-858.
    PMID: 32579723 DOI: 10.1002/ddr.21704
    Majority of the representative drugs customarily interact with multiple targets manifesting unintended side effects. In addition, drug resistance and over expression of the cellular efflux-pumps render certain classes of drugs ineffective. With only a few innovative formulations in development, it is necessary to identify pharmacophores and novel strategies for creating new drugs. The conjugation of dissimilar pharmacophoric moieties to design hybrid molecules with an attractive therapeutic profile is an emerging paradigm in the contemporary drug development regime. The recent decade witnessed the remarkable biological potential of 1,3,5-triazine framework in the development of various chemotherapeutics. The appending of the 1,3,5-triazine nucleus to biologically relevant moieties has delivered exciting results. The present review focuses on 1,3,5-triazine based hybrid molecules in the development of pharmaceuticals.
    Matched MeSH terms: Anti-Infective Agents/chemistry
  20. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Anti-Infective Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links