Displaying publications 21 - 40 of 74 in total

Abstract:
Sort:
  1. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H
    Asian Pac J Trop Med, 2012 Mar;5(3):202-9.
    PMID: 22305785 DOI: 10.1016/S1995-7645(12)60025-X
    OBJECTIVE: To analyze the chemical composition of the essential oils of Curcuma aeruginosa (C. aeruginosa), Curcuma mangga (C. mangga), and Zingiber cassumunar (Z. cassumunar), and study their antimicrobial activity.

    METHODS: Essential oils obtained by steam distillation were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of the essential oils was evaluated against four bacteria: Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa); and two fungi: Candida albicans (C. albicans) and Cyptococcus neoformans (C. neoformans), using disc-diffusion and broth microdilution methods.

    RESULTS: Cycloisolongifolene, 8,9-dehydro formyl (35.29%) and dihydrocostunolide (22.51%) were the major compounds in C. aeruginosa oil; whereas caryophyllene oxide (18.71%) and caryophyllene (12.69%) were the major compounds in C. mangga oil; and 2,6,9,9-tetramethyl-2,6,10-cycloundecatrien-1-one (60.77%) and α-caryophyllene (23.92%) were abundant in Z. cassumunar oil. The essential oils displayed varying degrees of antimicrobial activity against all tested microorganisms. C. mangga oil had the highest and most broad-spectrum activity by inhibiting all microorganisms tested, with C. neoformans being the most sensitive microorganism by having the lowest minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 0.1 μL/mL. C. aeruginosa oil showed mild antimicrobial activity, whereas Z. cassumunar had very low or weak activity against the tested microorganisms.

    CONCLUSIONS: The preliminary results suggest promising antimicrobial properties of C. mangga and C. aeruginosa, which may be useful for food preservation, pharmaceutical treatment and natural therapies.

    Matched MeSH terms: Plant Oils/pharmacology*
  2. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, et al.
    Molecules, 2012 Aug 10;17(8):9631-40.
    PMID: 22885359 DOI: 10.3390/molecules17089631
    The amino acid and fatty acid composition of polypeptide k and oil isolated from the seeds of Momordica charantia was analysed. The analysis revealed polypeptide k contained 9 out of 11 essential amino acids, among a total of 18 types of amino acids. Glutamic acid, aspartic acid, arginine and glycine were the most abundant (17.08%, 9.71%, 9.50% and 8.90% of total amino acids, respectively). Fatty acid analysis showed unusually high amounts of C18-0 (stearic acid, 62.31% of total fatty acid). C18-1 (oleic acid) and C18-2 (linoleic acid) were the other major fatty acid detected (12.53% and 10.40%, respectively). The oil was devoid of the short fatty acids (C4-0 to C8-0). Polypeptide k and oil were also subjected to in vitro α-glucosidase and α-amylase inhibition assays. Both polypeptide k and seed oil showed potent inhibition of α-glucosidase enzyme (79.18% and 53.55% inhibition, respectively). α-Amylase was inhibited by 35.58% and 38.02%, respectively. Collectively, the in vitro assay strongly suggests that both polypeptide k and seed oil from Momordica charantia are potent potential hypoglycemic agents.
    Matched MeSH terms: Plant Oils/pharmacology*
  3. Mat MC, Mohamed AS, Hamid SS
    Lipids Health Dis, 2011;10:216.
    PMID: 22104447 DOI: 10.1186/1476-511X-10-216
    Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.
    Matched MeSH terms: Plant Oils/pharmacology*
  4. Marina AM, Man YB, Nazimah SA, Amin I
    Int J Food Sci Nutr, 2009;60 Suppl 2:114-23.
    PMID: 19115123 DOI: 10.1080/09637480802549127
    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
    Matched MeSH terms: Plant Oils/pharmacology*
  5. Jaya-Ram A, Shu-Chien AC, Kuah MK
    Fish Physiol Biochem, 2016 Aug;42(4):1107-22.
    PMID: 26842427 DOI: 10.1007/s10695-016-0201-y
    Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.
    Matched MeSH terms: Plant Oils/pharmacology*
  6. Mastura M, Nor Azah MA, Khozirah S, Mawardi R, Manaf AA
    Cytobios, 1999;98(387):17-23.
    PMID: 10490360
    Matched MeSH terms: Plant Oils/pharmacology*
  7. Ng JH, Nesaretnam K, Reimann K, Lai LC
    Int J Cancer, 2000 Oct 1;88(1):135-8.
    PMID: 10962451
    Oestrogen is important in the development of breast cancer. Oestrogen receptor positive breast cancers are associated with a better prognosis than oestrogen-receptor negative breast cancers since they are more responsive to hormonal treatment. Oestrone sulphate acts as a huge reservoir for oestrogens in the breast. It is converted to the potent oestrogen, oestradiol (E(2)) by the enzymes oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase (E(2)DH). Retinoic acid and carotenoids have been shown to have chemopreventive activity against some cancers. The aim of our study was to determine and compare the effects of retinoic acid and palm oil carotenoids on growth of and oestrone sulphatase and E(2)DH activities in the oestrogen receptor positive, MCF-7 and oestrogen receptor negative, MDA-MB-231 breast cancer cell lines. Retinoic acid and carotenoids inhibited MCF-7 cell growth but had no effect on MDA-MB-231 cell growth. Both retinoic acid and carotenoids stimulated oestrone sulphatase activity in the MCF-7 cell line. E(1) to E(2) conversion was inhibited by 10(-7) M carotenoids but was stimulated at 10(-6) M in the MCF-7 cell line. Retinoic acid had no effect on E(1) to E(2) conversion at 10(-7) M but stimulated E(1) to E(2) conversion at 10(-6) M. Retinoic acid and carotenoids had no effect on E(2) to E(1) conversion in the MCF-7 cell line. Retinoic acid stimulated E(1) to E(2) conversion in the MDA-MB-231 cell line but had no effect on oestrone sulphatase activity or E(2) to E(1) conversion in this cell line. Both oestrone sulphatase and E(2)DH activity were not affected by carotenoids in the MDA-MB-231 cell line. In conclusion, retinoic acid and carotenoids may prevent the development of hormone-dependent breast cancers since they inhibit the growth of the MCF-7 cell line.
    Matched MeSH terms: Plant Oils/pharmacology*
  8. Abiri R, Silva ALM, de Mesquita LSS, de Mesquita JWC, Atabaki N, de Almeida EB, et al.
    Food Res Int, 2018 07;109:403-415.
    PMID: 29803465 DOI: 10.1016/j.foodres.2018.03.072
    Artemisia vulgaris is one of the important medicinal plant species of the genus Artemisia, which is usually known for its volatile oils. The genus Artemisia has become the subject of great interest due to its chemical and biological diversity as well as the discovery and isolation of promising anti-malarial drug artemisinin. A. vulgaris has a long history in treatment of human ailments by medicinal plants in various parts of the world. This medicinal plant possesses a broad spectrum of therapeutic properties including: anti-malarial, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-tumoral, immunomodulatory, hepatoprotective, anti-spasmodic and anti-septic. These activities are mainly attributed to the presence of various classes of secondary metabolites, including flavonoids, sesquiterpene lactones, coumarins, acetylenes, phenolic acids, organic acids, mono- and sesquiterpenes. Studies related to A. vulgaris morphology, anatomy and phytochemistry has gained a significant interest for better understanding of production and accumulation of therapeutic compounds in this species. Recently, phytochemical and pharmacological investigations have corroborated the therapeutic potential of bioactive compounds of A. vulgaris. These findings provided further evidence for gaining deeper insight into the identification and isolation of novel compounds, which act as alternative sources of anti-malarial drugs in a cost-effective manner. Considering the rising demand and various medical applications of A. vulgaris, this review highlights the recent reports on the chemistry, biological activities and biotechnological interventions for controlled and continuous production of bioactive compounds from this plant species.
    Matched MeSH terms: Plant Oils/pharmacology*
  9. Tan CX, Chong GH, Hamzah H, Ghazali HM
    Phytother Res, 2018 Nov;32(11):2264-2274.
    PMID: 30051518 DOI: 10.1002/ptr.6164
    Hypercholesterolemia is a major risk factor for the initiation and development of nonalcoholic fatty liver disease and atherosclerosis. The present study evaluated the hypocholesterolemic effect of virgin avocado oil (VAO) using urinary metabolomic method. Male Sprague-Dawley rats were fed high-cholesterol diet for four weeks to induce hypercholesterolemia. After confirming the establishment of hypercholesterolemia model, the VAO (450 and 900 mg·kg-1 ·day-1 ) and simvastatin (10 mg·kg-1 ·day-1 ) were given orally while maintaining the high-cholesterol diet for another four weeks. Assessment of urinary metabolomics using NMR revealed that VAO treatment could partially recover the metabolism dysfunction induced by hypercholesterolemia mainly via lipid, energy, amino acid, and gut microbiota metabolism.
    Matched MeSH terms: Plant Oils/pharmacology*
  10. Abu El Ezz NMT, Aboelsoued D, Hassan SE, Abdel Megeed KN, El-Metenawy TM
    Trop Biomed, 2020 Dec 01;37(4):1018-1028.
    PMID: 33612754 DOI: 10.47665/tb.37.4.1018
    The present study was conducted to detect the therapeutic effect of Moringa oleifera and Thymus vulgaris oils on hepatic coccidiosis in experimentally infected rabbits. Also, immunomodulatory effect of the two oils was detected. Twenty-four Newzealand rabbits were used in this study and divided into 4 groups; healthy rabbits, experimentally infected rabbits with Eimeria stiedae oocysts, and two infected treated groups (one with moringa (200 mg/kg) and the other with thyme (500 mg/kg) oils). The results showed highly significant reduction in oocysts shedding (P<0.001 and P<0.05) in the two infected and treated rabbits than the infected non-treated rabbits in almost all days post infection (PI). Thyme oil was more potent and stopped oocysts shedding earlier at the day 34 PI compared to moringa oil at the day 41 PI. Microscopically, there was a damage in the oocysts shed by treated rabbits. Macroscopically, the livers of thyme oil treated rabbits showed more enhancement with protection percentage 75% than those treated with moringa oil in which protection percentage was 55%. The highest titer of antibodies was detected in moringa oil treated rabbits. It was concluded that both moringa and thyme oils had an anti-coccidial effect with thyme oil superiority. So, thyme oil could be useful as an alternative product for the control of rabbit coccidiosis.
    Matched MeSH terms: Plant Oils/pharmacology
  11. Jayusman PA, Budin SB, Ghazali AR, Taib IS, Louis SR
    Pak J Pharm Sci, 2014 Nov;27(6):1873-80.
    PMID: 25362611
    Indiscriminate application of organophosphate (OP) pesticides has led to environmental pollution and severe health problems. The aim of the present study was to evaluate the effect of palm oil tocotrienol-rich fraction (TRF) on biochemical and morphological changes of the liver in rats treated with fenitrothion (FNT), a type of OP pesticide. A total of 28 male Sprague-Dawley rats were divided into four groups; control group, TRF-supplemented group, FNT-treated group and TRF+FNT group. TRF (200 mg/kg) was supplemented 30 minutes prior to FNT (20 mg/kg) administration, both orally for 28 consecutive days. Following 28 days of treatment, plasma biochemical changes and liver morphology were evaluated. The body and absolute liver weights were significantly elevated in TRF+FNT group compared to FNT group. TRF administration significantly decreased the total protein level and restored the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in TRF + FNT group. In contrast, total bilirubin level, γ-glutamyltranferase (GGT) and cholinesterase activity in TRF + FNT group did not significantly differ from FNT group. Administration of TRF also prevented FNT-induced morphological changes of liver as observed by electron microscope. In conclusion, TRF supplementation showed potential protective effect towards biochemical and ultrastructural changes in liver induced by FNT.
    Matched MeSH terms: Plant Oils/pharmacology*
  12. Sambanthamurthi R, Sundram K, Tan Y
    Prog Lipid Res, 2000 Nov;39(6):507-58.
    PMID: 11106812
    Matched MeSH terms: Plant Oils/pharmacology
  13. Han YZ, Ren TJ, Jiang ZQ, Jiang BQ, Gao J, Koshio S, et al.
    Fish Physiol Biochem, 2012 Dec;38(6):1785-1794.
    PMID: 22763698 DOI: 10.1007/s10695-012-9675-4
    A 60-day feeding trial was conducted to determine the effects of palm oil blended with oxidized and non-oxidized fish oil on growth performances, hematology, and non-specific immune response in juvenile Japanese sea bass, Lateolabrax japonicas. Japanese sea bass (1.73 ± 0.01 g) were fed seven experimental diets containing 100 g/kg of dietary lipid in forms of palm oil (10P), fish oil (10F), fish oil blended with palm oil at different ratios, 6:4 (6F4P) and 4:6 (4F6P), oxidized fish oil (10OF), and oxidized fish oil blended with palm oil at different ratios, 6:4 (6OF4P) and 4:6 (4OF6P). After the feeding trial, the following results were illustrated. No significant effects were observed in survival, feed conversion ratio, condition factor, and hematocrit after feeding with experimental diets for 60 days. The relatively higher specific growth rate and hematology were observed in 6F4P. Furthermore, both palm oil and oxidized fish oil acted as a negatively on serum lysozyme activity (P < 0.05). This study suggested that a ration of 6F4P is recommended as an innocuous ratio for Japanese sea bass. Furthermore, according to the present investigation, palm oil seems to have the ability to improve the protein efficiency when added to oxidized fish diets as well as a positive trend to the growth performance (P > 0.05).
    Matched MeSH terms: Plant Oils/pharmacology*
  14. Voon PT, Lee ST, Ng TKW, Ng YT, Yong XS, Lee VKM, et al.
    Adv Nutr, 2019 Jul 01;10(4):647-659.
    PMID: 31095284 DOI: 10.1093/advances/nmy122
    It is not clear whether a saturated fatty acid-rich palm olein diet has any significant adverse effect on established surrogate lipid markers of cardiovascular disease (CVD) risk. We reviewed the effect of palm olein with other oils on serum lipid in healthy adults. We searched in MEDLINE and CENTRAL: Central Register of Controlled Trials from 1975 to January 2018 for randomized controlled trials of ≥2 wk intervention that compared the effects of palm olein (the liquid fraction of palm oil) with other oils such as coconut oil, lard, canola oil, high-oleic sunflower oil, olive oil, peanut oil, and soybean oil on changes in serum lipids. Nine studies were eligible and were included, with a total of 533 and 542 subjects on palm olein and other dietary oil diets, respectively. We extracted and compared all the data for serum lipids, such as total cholesterol (TC), LDL cholesterol, HDL cholesterol, triglyceride, and TC/HDL cholesterol ratio. When comparing palm olein with other dietary oils, the overall weighted mean differences for TC, LDL cholesterol, HDL cholesterol, triglycerides, and the TC/HDL cholesterol ratio were -0.10 (95% CI: -0.30, 0.10; P = 0.34), -0.06 (95% CI: -0.29,0.16; P = 0.59), 0.02 (95% CI: -0.01, 0.04; P = 0.20), 0.01 (95% CI: -0.05, 0.06; P = 0.85), and -0.15 (95% CI: -0.43, 0.14; P = 0.32), respectively. Overall, there are no significant differences in the effects of palm olein intake on lipoprotein biomarkers (P > 0.05) compared with other dietary oils. However, dietary palm olein was found to have effects comparable to those of other unsaturated dietary oils (monounsaturated fatty acid- and polyunsaturated fatty acid-rich oils) but differed from that of saturated fatty acid-rich oils with respect to the serum lipid profile in healthy adults.
    Matched MeSH terms: Plant Oils/pharmacology
  15. Dauqan E, Sani HA, Abdullah A, Kasim ZM
    Pak J Biol Sci, 2011 Mar 15;14(6):399-403.
    PMID: 21902064
    The objective of the study was to evaluate the effect of four different vegetable oils [red palm olein (RPO), palm olein (PO), corn oil (CO), coconut oil (COC)] on antioxidant enzymes activity of rat liver. Sixty six Sprague Dawley male rats which were randomly divided into eleven groups of 6 rats per group and were treated with 15% of RPO, PO, CO and COC for 4 and 8 weeks. Rats in the control group were given normal rat pellet only while in treated groups, 15% of additional different vegetable oils were given. After 4 weeks of treatment the catalase (CAT) activity results showed that there was no significance difference (p > or = 0.05) between the control group and treated groups while after 8 weeks of treatment showed that there was no significant different (p > or = 0.05) between control group and RPO group but the treated rat liver with PO, CO and COC groups were the lowest and it were significantly lower (> or = 0.05) than control group. For superoxide dismutase (SOD) there was no significance difference (p > or = 0.05) between the control group and treated groups of vegetable oils after 4 and 8 weeks of treatment. Thus the study indicated that there was no significant (p > or = 0.05) effect on antioxidant enzyme (superoxide dismutase) but there was significant effect (p > or = 0.05) on catalase in rat liver.
    Matched MeSH terms: Plant Oils/pharmacology*
  16. Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, et al.
    Molecules, 2021 Jan 26;26(3).
    PMID: 33530290 DOI: 10.3390/molecules26030628
    The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
    Matched MeSH terms: Plant Oils/pharmacology
  17. Ji X, Usman A, Razalli NH, Sambanthamurthi R, Gupta SV
    Anticancer Res, 2015 Jan;35(1):97-106.
    PMID: 25550539
    Oil palm phenolics (OPP) or Palm Juice (PJ), a water soluble extract from the palm fruit (Elaies guineensis) has been documented to have anti-carcinogenic activities in various cancer types.
    Matched MeSH terms: Plant Oils/pharmacology
  18. Filippou A, Teng KT, Berry SE, Sanders TA
    Eur J Clin Nutr, 2014 Sep;68(9):1036-41.
    PMID: 25052227 DOI: 10.1038/ejcn.2014.141
    BACKGROUND/OBJECTIVES: Dietary triacylglycerols containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose.

    SUBJECTS/METHODS: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20-50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose.

    RESULTS: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0-2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05).

    CONCLUSION: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis.

    Matched MeSH terms: Plant Oils/pharmacology
  19. Shakirin FH, Azlan A, Ismail A, Amom Z, Yuon LC
    Oxid Med Cell Longev, 2012;2012:840973.
    PMID: 22685623 DOI: 10.1155/2012/840973
    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.
    Matched MeSH terms: Plant Oils/pharmacology*
  20. Tan SW, Ramasamy R, Abdullah M, Vidyadaran S
    Cell Immunol, 2011;271(2):205-9.
    PMID: 21839427 DOI: 10.1016/j.cellimm.2011.07.012
    Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p
    Matched MeSH terms: Plant Oils/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links